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Athreya, Goldenfeld, and Dantzig �Phys. Rev. E 74, 011601 �2006�� claim that the current implementation
of the renormalization-group method neglects the proper ordering of renormalization and differentiation. Their
analysis is, however, based on the wrong multiple-scales method results.
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The phase-field crystal �PFC� model �1� is the continuum
approach that is promising in successfully treating many
nonequilibrium dynamics arising during materials process-
ing. On the other hand, the amplitude equation approach that
describes the slowly varying amplitudes of the order param-
eter field always plays an important role in theories of pat-
tern formation in general outside of equilibrium. Therefore it
is quite natural that the amplitude equation �AEq� has been
proposed �2� as a coarse-grained version of the PFC model.
We shall call the proposed equation the heuristic AEq since
the method to derive it is phenomenological and rather
heuristic.

In a recent paper �3�, Athreya, Goldenfeld, and Dantzig
�AGD� employed various singular perturbation methods to
see if the heuristic AEq could be derived from systematically
coarse graining the PFC equation. More specifically they
used the multiple-scales �MSs� method and variants of the
renormalization group �RG�. They assume that the criterion
upon which to test the accuracy of a theory is the method of
MSs. Thus if one method yields the result which is closer to
the MSs result than the other, then that method is deemed
more correct. The net outcome of their calculations is that
none of the current RG methods agrees with the MSs
solution.

Confronted with this difficulty and in order to get the RG
calculation to agree with the MSs calculation, AGD claimed
that one has to depart from the conventional RG procedure
originally developed by Chen et al. in �4�. Namely, operator
ordering in the RG procedure is to be treated properly, and
that the amplitude must be renormalized before the differen-
tial operation is performed upon the amplitude in exactly the
opposite order of operations which is employed in the cur-
rent RG methods �4–6�. They then showed that, with this
remedy implemented, the �proto-�RG method produces the
same answer as the method of MSs; to this finding we will
return below. To justify the generality of the proposed RG
prescription, they then used the Van der Pol oscillator as an
example. The explicit results of the proto-RG which is modi-
fied as prescribed as above and the MSs calculations were
given, and showed that they agreed with each other.

However, the MSs solution given by AGD for the Van der
Pol problem omitted a needed extra time scale. In fact, the
three-time expansion is necessary to kill the secular terms
that appear in their calculations �7�, while they erroneously
used the two-timing MSs expansion by starting their calcu-
lations with the statement: “It is known that the scaling �
=�t works for this problem �30�” ��30� being the reference
cited in �3��. Redone with the correct number of time scales,

the amplitude equation obtained from the MSs method be-
comes
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which agrees with the unmodified proto-RG result �5�. Thus
the very example that AGD have chosen for their calcula-
tions shows that the conventional RG methods should not be
modified as advocated by them, for ordinary differential
equations, to say the least. Moreover, it is rather an easy
exercise to prove that all the conventional RG methods give
the identical result, which agrees exactly with the MSs
solution �1�.

The MSs result for the PFC equation due to AGD has
overlooked an important physics. We wish to point out here
that the conservation law inherent in the PFC equation im-
plies the existence of neutral modes at zero wave number.
The important point to remember is that in the vicinity of the
instability to a cellular structure of finite wave number �kc�,
the amplitude of slow neutral modes couples to that of the
critical modes at kc and modifies the dynamics significantly.
The well-known example is the case of vertical vorticity
modes in Rayleigh-Bénard convection with stress-free
boundary conditions �8�. Unfortunately, the MSs solution by
AGD fails to take these slow modes into account and hence
cannot be right. Indeed, the standard MSs analysis shows
that the neutral mode generates, e.g., an additional term
proportional to

�1 − L1D�AB �2�

to the MSs solution of AGD �i.e., Eq. �46� in �3�; we have
used the same notations as therein�, where B is the amplitude
of the neutral mode. See also Ref. �23� cited by AGD �3�. As
already described above, AGD employed the method of MSs
as a benchmark for accuracy of theory. Since the MSs solu-
tion that AGD employed is thus incorrect, we are inevitably
led to the conclusion that the proposed amendment to the
current RG methods is unfounded. We remark in closing that
although the method of MSs thus could not justify the heu-
ristic AEq, to reproduce the correct MSs solution alluded to
above by the now standard �or revised� RG method is an-
other story from the context of the present discussion. Cer-
tainly, the RG calculation of AGD itself needs to be im-
proved to take the zero mode into account before any
conclusion can be reached.
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